Case study and tutorial for Amazon SageMaker Studio (Unified Experience), designed to help enterprise teams, data scientists, and ML engineers understand its capabilities, features, and implementation through a real-world example.
๐ง Case Study: Predicting Loan Defaults Using Amazon SageMaker Studio (Unified Experience)
๐ข Client Profile
Company: Condifential
Industry: Financial Services
Objective: To build an end-to-end machine learning pipeline to predict loan default risks using Amazon SageMaker Studio Unified Experience.
๐ฏ Business Challenge
The company needed:
-
A collaborative, scalable, and secure ML environment
-
Model versioning and experimentation tracking
-
Integration with RDS, S3, and CI/CD workflows
-
Compliance with data governance and role-based access control (RBAC)
✅ Why Amazon SageMaker Studio (Unified Experience)?
-
Unified interface for data wrangling, experimentation, model building, deployment, and monitoring
-
Built-in JupyterLab & SageMaker JumpStart
-
MLOps integration with SageMaker Pipelines, Model Registry
-
Custom image support for enterprise tools like scikit-learn, PyTorch, TensorFlow
-
IAM-based access controls via SageMaker Domain
๐ ️ Architecture Overview
+-------------------------+
| Amazon S3 | <-- Raw Loan Data
+-------------------------+
|
v
+--------------------+
| Amazon SageMaker |
| Studio (Unified) |
+--------------------+
| | |
+--------------+ | +---------------------+
| | |
Data Wrangler SageMaker Pipelines SageMaker Experiments
(Data Prep) (ETL + Train + Deploy) (Track Models & Metrics)
| | |
+--------------------+----------------------------+
|
v
+---------------------------+
| SageMaker Model Registry |
+---------------------------+
|
v
+---------------------+
| SageMaker Endpoints|
+---------------------+
|
v
+------------------+
| Client App (UI) |
+------------------+
๐งช Step-by-Step Tutorial: ML Pipeline with SageMaker Studio
๐น 1. Set Up SageMaker Studio
-
Go to the AWS Console → SageMaker → “SageMaker Domain” → Create Domain
-
Use IAM authentication, enable default SageMaker Studio settings
-
Create a User Profile with execution roles attached (
AmazonSageMakerFullAccess
,S3FullAccess
,RDSReadOnly
etc.)
๐น 2. Launch SageMaker Studio
-
Select the created user → “Launch Studio”
-
Choose Kernel → Python 3 (Data Science)
-
Start a new Jupyter notebook
๐น 3. Data Ingestion & Exploration
import boto3
import pandas as pd
# Load from S3
s3_bucket = 's3://trustfund-data/loan-defaults.csv'
df = pd.read_csv(s3_bucket)
# Quick stats
df.describe()
df['default'].value_counts()
๐น 4. Data Preparation with SageMaker Data Wrangler
-
Open Data Wrangler from Studio UI
-
Import S3 dataset → Profile the data
-
Add transforms: handle nulls, encode categorical, normalize
-
Export flow to SageMaker Pipeline (generates
.flow
and.pipeline.py
)
๐น 5. Build Training Script (train.py
)
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import joblib
import pandas as pd
df = pd.read_csv('loan-defaults.csv')
X = df.drop('default', axis=1)
y = df['default']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)
joblib.dump(model, 'model.joblib')
๐น 6. Create and Run a SageMaker Pipeline
from sagemaker.workflow.pipeline import Pipeline
from sagemaker.workflow.steps import ProcessingStep, TrainingStep, ModelStep
from sagemaker.sklearn.processing import SKLearnProcessor
from sagemaker.sklearn.estimator import SKLearn
# Setup processor
sklearn_processor = SKLearnProcessor(
framework_version='0.23-1',
role='SageMakerRole',
instance_type='ml.m5.xlarge',
instance_count=1
)
# Define pipeline steps
step_process = ProcessingStep(...)
step_train = TrainingStep(...)
step_register = ModelStep(...)
pipeline = Pipeline(
name="LoanDefaultPipeline",
steps=[step_process, step_train, step_register]
)
pipeline.upsert(role_arn="SageMakerRole")
pipeline.start()
๐น 7. Deploy Model to Endpoint
from sagemaker.model import Model
model = Model(
model_data='s3://.../model.tar.gz',
role='SageMakerRole',
entry_point='inference.py'
)
predictor = model.deploy(instance_type='ml.m5.large', initial_instance_count=1)
๐น 8. Monitor and Retrain
Use:
-
SageMaker Model Monitor for drift detection
-
SageMaker Pipelines to automate retraining on new data
๐ Results
Metric | Value |
---|---|
AUC | 0.91 |
Accuracy | 88.4% |
Training Time | ~3 minutes |
Retrain Schedule | Weekly |
๐ก️ Security & Governance
-
IAM roles enforced per user profile
-
Audit trail via CloudTrail + SageMaker lineage tracking
-
Data encryption at rest and in transit (KMS)
๐ Summary
Amazon SageMaker Studio Unified Experience empowers enterprises to:
-
Consolidate ML workflows in one secure UI
-
Integrate data prep, experimentation, model registry, and CI/CD
-
Boost productivity with reusable components
Would you like a downloadable diagram or sample repo structure for this use case?